Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 221: 118752, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810632

RESUMO

Organic matter (OM) in surface and ground waters may cause membrane fouling that is laborious to clean once established. Spontaneous osmotic backwash (OB) induced by solar irradiance fluctuation has been demonstrated for early mineral scaling/organic fouling control in decentralised small-scale photovoltaic powered-nanofiltration/reverse osmosis (PV-NF/RO) membrane systems. However, various OM types will interact differently with membranes which in turn affects the effectiveness of OB. This work evaluates the suitability of spontaneous OB cleaning for eleven OM types (covering low-molecular-weight organics (LMWO), humic substances, polyphenolic compounds and biopolymers) regarding adhesive interactions with NF/RO membranes. The adhesive interactions were quantified by an asymmetric flow field-flow fractionation coupled with an organic carbon detector (FFFF-OCD). The underlying mechanism of OM-membrane adhesive interactions affecting OB cleaning was elucidated. The results indicate that humic acid (a typical humic substance) and tannic acid (a typical polyphenolic compound) induced stronger adhesive interaction with NF/RO membranes than biopolymers and LMWO. When the mass loss of an OM due to adhesion was below a critical range, the spontaneous OB is most effective (>85% flux recovery); and above this range, the OB becomes ineffective (<50% flux recovery). Polyphenolic compounds and humic substances resulted in lower OB cleaning efficiency, due to their higher aromatic content, enhancing hydrophobic interactions and hydrogen bonding. Calcium-facilitated adhesion of some OM types (such as humic substances, polyphenolics and biopolymers) increased irreversible organic fouling potential and weakened OB cleaning, which was verified by both FFFF-OCD and membrane filtration results. This work provides a guidance to formulate strategies to enhance spontaneous OB cleaning, such as first identifying the adhesion of OM in feedwater (surface and ground waters) using FFFF-OCD, and then removing "sticky" OM using suitable pre-treatment processes.


Assuntos
Substâncias Húmicas , Purificação da Água , Adesivos , Membranas Artificiais , Osmose , Energia Renovável , Purificação da Água/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...